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Potential Mechanisms of Thyroid Disruption in Humans: Interaction of
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Organochilorine compounds, particularly polychlorinated biphenyls (PCBs), alter serum thyroid
hormone levels in humans. Hydroxylated organochlorines have relatively h affinities for the
serum trnsport protein transthyretin, but the ability of these compounds to interact with the
human thyroid receptor is unknown. Using a baculovirus expression system in in~sct cells (Sf9
cells), we produced recombinant human thyroid receptor P (hTRJ3). In competitive binding
exeriments, the recombinant receptor had the expected relative affinity for thyroid hormones
and their analogs. In com tiive inhibiion experiments with PCBsy PCBs (OH-
PCBs), DDT and its metabolites :and several organochlorine herbicides, the OH-PCBs
competed for binding. The affinity of hITR for OH-PCBs was 10,000-fold lower (K4 = 20-50
pM) than its affinity for thyroid hoone (3,3,5-triiodothyronine, T3; 14i= 100nM). Because
their relative affinity for the receptor was low, we tested the ability ofOH-PCBs to interact with
the serum transport proteins-trasthyretin and thyroid-binding globulin (TBG). lith the
exception of one compound, the OH-PCBs had the same affinity (14 = 10-80 nM) for
transthyretin as thyroid hormone (thyroxine; T4). Only two of the OH-PCBs bound TBG (K1 =

3-7 PM), but with a 100-fold lower affinity than T4. Hydroylated PCBs have relatively low
affinities for the human thyroid receptor in vito but they have a thyroid. hormonelike affinity
for the serum transport protein trathyr . Based on these results, OH-PCBs in viwo are more
likely to compete for binding to se transport proteins than for bindingg to the thyroid recep-
tor. Key words endocrine disruption, PCB, thyroid-binding globulin, ithyrid receptor,
transthyretin. Environ Health Perspect 107:273-278 (1999). [Online 9 March 1999]
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An important question in endocrine disrup-
tion is the mechanism by which a xenobiot-
ic compound alters the action of endoge-
nous hormones. One possible mechanism is
direct interaction with the hormone recep-
tor, either as an agonist or as an antagonist.
In the case of thyroid hormone, a second
important mechanism may be the ability of
compounds to alter serum transport of thy-
roid hormones (TH). In nonmammalian
vertebrates, the major transport protein is
prealbumin (transthyretin); while some
mammals, induding humans, have a second
binding protein, thyroid-binding globulin
(TBG) (1). Assessing the relative affinity of
the thyroid receptor and the serum trans-
port proteins for xenobiotics should help
clarify one of the mechanisms by which
xenobiotics alter thyroid homeostasis.

Alterations in thyroid homeostasis by
organochlorine compounds have been docu-
mented for many species, induding humans.
In most cases, exposure to organochlorine
compounds is correlated with decreased
serum levels of thyroid hormone, particularly
thyroxine (T4). Exposure to polychlorinated
biphenyls (PCBs) has been correlated with
decreased serum T4 concentrations in rats
(2-10) and humans (6,11,12). Evidence
from rat studies indicates that PCB-induced

decreases in serum T4 are the result of
increased metabolism by uridine diphos-
phate glucuronysyltransferase (UDPGT), a
hepatic enzyme that glucuronidates T4
(5,13-15). Another class of organochlo-
rines, the choroacetanilides acetochlor and
alachlor, elevates UDPGT activity and con-
comitandy decreases serum T4 levels in rats
(16,1A. Acetochlor also alters thyroid hor-
mone (3,3',5-triiodothyronine; T3) action
in amphibians, accelerating T3-induced
metamorphosis (18). DDT and its metabo-
lites alter serum T4 levels in birds (19) and
humans (20). DDT also alters thyroid
metabolism in rats by increasing hepatic
UDPGT activity (21).

Because of their physiological effects
and their structural resemblance to thyroid
hormones (Fig. 1), several studies have
investigated the ability of PCBs to bind to
the serum transport proteins transthyretin
(3,8,22-24) and TBG (22) and to the rat
thyroid receptor (23). Transthyretin
(TTR) and TBG have similar affinities for
the natural ligand, T4 (50-90 nM) (22),
but have different affinities for PCBs.
Hydroxylated PCBs are potent ligands for
TTR, having affinities in the 1 nM range,
50-fold greater than that of T4 (8,22,24).
Few hydroxylated PCBs bind TBG (22)

and few unmetabolized PCBs have strong
affinities for either TTR or TBG (8,22,23).
Like the transport proteins, the rat thyroid
receptor appears to have a higher affinity
for hydroxylated versus parent PCBs (23).

Although studies of binding affinity
suggest that organochlorine compounds
may alter thyroid homeostasis by interact-
ing with thyroid hormone transport pro-
teins in humans and animals, little is
known about the ability of organochlorines
to interact with the thyroid receptor, partic-
ularly in humans. We examined the ability
of PCBs, DDTs, chloroacetanilides, and an
isoprenoid to bind a recombinant human
thyroid receptor (hTRJ3). To evaluate the
relative significance of receptor versus trans-
port protein binding for disrupting thyroid
homeostasis, compounds that bound the
receptor were also tested for binding to
human transthyretin and TBG.

Methods
Chemicals

T3, T4, 3,3',5-triiodothyroacetic acid (Triac),
3,3',5,5'-tetraiodothyroacetic acid (Tetrac),
3,3',5'-triiodo-L-thyronine (rT3), 2,2-bis(p-
chlorophenyl)-ethanol (DDOH), human
TBG, and human transthyretin (prealbumin)
were purchased from Sigma Chemical Co.
(St. Louis, MO). The PCBs-3,3',4,4',5-
pentachlorobiphenyl (PCB 126), 3,3'4,4'-
tetrachlorobiphenyl (PCB 77), 3-OH-
2',4',6'-trichlorobiphenyl, 4-OH-3,5-
dichlorobiphenyl, 4-OH-2',3',4',5'-tetra-
chlorobiphenyl, 4-OH-2',3,4',6'-tetrachloro-
biphenyl, 4-OH-2',3,3',4',5'-pentachloro-
biphenyl, and 4-OH-2',3,4',5,6'-pen-
tachlorobiphenyl-were purchased from
AccuStandard (New Haven, CT). The
hydroxylated PCB, 4,4'-diOH-3,3',5,5'-
tetrachlorobiphenyl, was purchased from
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Figure 1. Structures of thyroid hormones and hydroxyla
rinated biphenyls (PCBs). CB, chlorinated biphenyl.

Ultra Scientific (North Kingstown, RI). The
DDTs- 1- (2-chlorophenyl) - 1 - (4-
chlorophenyl)-2,2,2-trichloroethane (o,p'-
DDT), 1 -(2-chlorophenyl)- 1 -(4-chloro-
phenyl)-2,2-dichloroethane (o,p'-DDD), 1,1-
bis(4-chlorophenyl)-2,2,2-trichloroethane
(p,p'-DDT), and 2,2-bis(4-chlorophenyl)-
1,1-dichloroethane (p,p'-DDE) were pur-
chased from Aldrich Chemical (Milwaukee,

-_)~ .WI). All chemicals were dis-
solved in DMSO. DMSO did
not exceed 0.01% in the bind-
ing assays.

.e'es'-: Transfection
Sf9 insect cells (pupal ovarian
cells from the fall armyworm)
were purchased from Invitrogen
(Carlsbad, CA) and cultured at
27 C in complete Grace's

|yllWil;W media (10% fetal bovine serum
lactalbumin hydrolysate, tissue
culture yeastolate, and gluta-
mine; Invitrogen). A bac-
ulovirus phagemid containing
the human thyroid receptor P1
cDNA was cloned into the
multiple doning site of the bac-

}s>".-. ulovirus phagemid pFastBacl
(Gibco BRL, Grand Island,

fii/?::& NY) by DNA Technologies
B_.^- t ' (Gaithersburg, MD). Confluent

v cells in a T-25 flask (Corning,
Corning, NY) were rinsed with
serum-free Grace's media and

Ewu.LS .. g transfected with 1 pg phagemid
DNA and 2 p1 lipofectin in 2
ml serum-free Grace's media at

Eill. f51 27°C. At the end of 5 hr, the
transfection medium was

,. replaced with complete Grace's
media. After 7 days, medium
containing baculovirus was har-

:.e:;. vested and stored at 40C. To
produce recombinant hTRnp,11j0.tt',confluent Sf9 cells in a T-150

1,,S flask were incubated with 7 ml
E baculovirus-containing medium

at 27°C for 1.5 hr. An additional
13 ml of Grace's media was
added and cells were cultured for
5 days. Virus-containing medi-
um was harvested and cell
extracts were prepared.

Preparation of Protein
Extract

7-S-2;mi tE Protocols for preparing cell
extracts were modified from

'! ,~sToscano (25), Bres and Eales
(26), and Sullivan et al. (27).

ited polychlo- Transfected Sf9 cells were
scraped from the flask and cen-
trifuged at 5,000 rpm for 5

min. The supernatant was harvested and
stored at 40C. The cell pellet was resuspend-
ed in 2.5 ml buffer A [10 mM Tris-HCI
(pH 7.6), 10% glycerol, 3 mM MgCI2, 2
mM CaCI2, 5 mM dithiothreitol (DYl), 1
mM Pefabloc, 1 pg/ml aprotinin, and 20
pM leupeptin], incubated for 20 min on ice,
and homogenized in a glass dounce. KCI
was added tO a concentration of 0.4 M and

the homogenate was incubated on ice for 30
min, with shearing through a pasteur pipet
every 10 min. The homogenate was then
centrifuged at 25,000 rpm for 15 min at 40
C. The supernatant (cell extract) was
aliquotted and stored at -80°C until use.

Immunodetection ofTR Protein
Cell extracts were heated (95°C) in sodium
dodecyl sulfate (SDS) loading buffer and
electrophoresed through 10% SDS-PAGE.
Gels were electroblotted onto polyvinylidene
difluoride membranes (Sigma) at 25 V
overnight. Membranes were rinsed in Tris-
buffered saline (TBS; 10 mM Tris-HCl, pH
7.6, and 150 mM NaCl) and blocked in
TBS supplemented with 3% bovine serum
albumin, fraction V (Sigma). Membranes
were incubated with a polyclonal antiserum
to amino acids 62-82 of human TR31
(1:1250; Affinity BioReagents, Golden,
CO) in TBST (TBS + 0.1% Tween-20) for
2 hr, rinsed 3 times in TBST, incubated for
1 hr with HRP-conjugated goat antirabbit
IgG (Kirkegaard-Perry, Gaithersburg,
MD), rinsed 4 times with TBST, and visu-
alized with enhanced chemiluminescence
(Amersham, Arlington Heights, IL).

TR Binding Assays
Saturation analysis. Cell extract containing
hTRP3 was added to assay buffer [10 mM
Tris-HCl (pH 7.4), 100% glycerol, 5 mM
DTT, and 0.5% CHAPS] to achieve a final
concentration of 50 pg protein/ml in 100
pl total volume. Extracts were preincubated
with 1,000-fold excess unlabeled T3 for 15
min at 21°C, then increasing concentra-
tions of [1251]T3 (0.05, 0.1, 0.25, 0.5,
0.75, 1, 1.5, 2, 2.5, 3, 5, and 10 nM) were
added and extracts were incubated for an
additional 60 min. The reaction was termi-
nated on ice and unbound [1251]T3 was
separated from bound [1251]T3 with the
addition of hydroxylapatite (HAP) slurry
(1:1 v/v in 0.1 M KCl, 10 mM Tris-HCl,
pH 7.4). Extracts were incubated in HAP
slurry for 40 min, with vortexing every 10
min. The slurry was centrifuged at 5,000
rpm for 3 min and buffer was aspirated.
HAP pellets were then washed 3-4 times
with 400 pl wash buffer [0. 1 M KCI, 10
mM Tris-HCl (pH 7.4), 0.5% CHAPS],
resuspended in 200 pl slurry buffer, and
counted in ScintiVerse scintillation fluid
(Fisher, Houston, TX).

Competitive inhibition experiments.
Based on the saturation analysis, 2.5 nM
[1251T3 was used in competitive inhibition
experiments. Nonsaturable binding was esti-
mated by preincubating cell extracts with
10,000-fold molar excess unlabeled T3 for
15 min. Varying concentrations (10-8 104
M) of unlabeled competitors were also
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preincubated with cell extract before addi-
tion of [125I]T3. All other conditions were as
described above.

To characterize the specificity of the
recombinant receptor, the known TR ago-
nists T3, T4, Triac, and Tetrac, and the
inactive T3 metabolite, rT3, were tested in
competitive inhibition experiments. We
selected organochlorine compounds for
testing based on their reported ability to
alter in vivo responses or to bind serum
transport proteins. PCB mixtures and some
specific PCBs decrease serum T4 levels, but
PCB 126 and PCB 77 markedly enhance
spatial learning in rats exposed in utero,
while only slightly altering serum T4 (2).
Because the enhancement of learning is
similar to that in hyperthyroid rat pups,
Schantz et al. (2) proposed that PCBs 126
and 77 might be thyroid receptor agonists.
We examined the interaction of these two
compounds with the human thyroid recep-
tor. Because several OH-PCBs bind TTR
as effectively as T4 (22), we also tested the
ability of OH-PCBs to bind the receptor.
DDTs and chloroacetanilides alter serum
T4 levels and catabolism, but their ability
to bind TR is unknown.

Thyroid-binding Protein and
Transthyretin Binding Assays
Conditions for these binding assays were
modified from Lans et al. (22). Briefly,
purified TBG or TTR was added to 200 pl
assay buffer (TR assay buffer discussed pre-
viously) for a final concentration of 30 nM.
We used 55 nM L-T4 containing 100,000
cpm [125I]L-T4 to estimate total binding.
Nonsaturable binding was estimated by
preincubating protein solutions with 100-
fold molar excess unlabeled L-T4 for 15

min. Varying concentrations of unlabeled
competitors were also pre-incubated with
the protein before the addition of [1251]L-
T4. All other conditions were as described
for TR saturation analysis, except the vol-
umes ofHAP slurry and of slurry buffer for
resuspension were doubled to account for
the twofold larger assay volume.

Results
Immunodetection
Infected Sf9 cells expressed a protein of
approximately 51 kDa that cross-reacted
with a polyclonal antibody specific to
hTRfI (Fig. 2). This protein is similar in
size to the 52-55 kDa proteins recombi-
nantly expressed in Escherichia coli (28,29).

TR Binding
Saturation analysis. Preliminary experi-
ments using 50, 100, 200, and 300 pg pro-
tein/ml indicated that minimal nonsaturable
binding (<10% of total binding) occurred at
50 gg protein/ml. Similarly, varying incuba-
tion times (15, 30, 45, 60, 90, and 120
min) showed that a 60-min incubation peri-
od was sufficient for achieving equilibrium
binding. Binding to recombinant hTRf" was
saturable at 3 nM [1251]T3 with a Kdof 1.37
± 0.24 nM (n = 4 experiments) and a B
of 0.30 ± 0.09 nM (Fig. 3). The binding
affinity observed with recombinant hTR,
expressed in Sf9 cells is similar to that
reported for other recombinant thyroid
receptors (28,29), but is lower than that
reported for thyroid receptors extracted
from tissues (approximately 0.1 nM) (30).

Competitive binding experiments.
Thyroid hormones and their analog showed
the expected order of affinity for recombinant

hTR[: Triac > T3 = L-T4 >> DL-T4 = Tetrac
(Fig. 4 and Table 1). Of the xenobiotics test-
ed, only the hydroxylated PCBs could inhibit
50% of [125I]T3 binding to hTRI (Fig. 5
and Table 1), although with 10,000-fold
lower potency than L-T4. The coplanar
PCBs, PCB 77 and PCB 126, did not dis-
place T3 from the receptor, nor did p,p'-
DDE, p,p'-DDT, acetochlor, or methoprene.
Although some displacement (20%) was
achieved by the highest concentrations (100
FM) of o,p'-DDD, o,p'-DDT, DDOH, and
alachlor, none of these compounds could
inhibit 50% of [125I]T3 binding.

TTR and TBG Binding
The binding affinity of unlabeled L-T4 was
62 ± 12 nM forTTRand 76 ± 15 nM for
TBG. These affinities are in agreement with
those reported by Lans et al. (22): 88-138
nM for TTR and 52-85 nM for TBG. All
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Figure 2. Western blot of cell extract from Sf9
cells infected with baculovirus containing the
human thyroid receptor (hTRI) gene. A 51-kDa
protein that cross-reacts specifically with a poly-
clonal antibody to hTR)1 is produced by the
infected Sf9 cells.
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Figure 3. (A) Saturation analysis and (B) Scatchard analysis of [125113,3',5-triiodothyronine (T3) binding to recombinant human thyroid receptor (hTRP). At each
concentration of [1251JT3, a 1,000-fold molar excess of unlabeled T3 was used to estimate nonsaturable binding (NSB). Curves are the average ± standard error of
four experiments. Abbreviations: TB, total binding; SB, saturable binding; B/F, bound/free concentration.
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of the 4-hydroxylated PCBs bound TTR
with affinities (10-140 nM) similar to that
of the natural ligand L-T4 (62 nM) (Fig. 6
and Table 1). Hydroxylation in the meta
position appeared to abolish TTR binding
(Table 1). PCB 126 bound TTR weakly,
with a 1,000-fold lower affinity than L-T4
and the 4-hydroxylated PCBs (Table 1 and
Fig. 6). DDOH was the only DDT
metabolite with weak affinity for TTR
(approximately 100 jiM).

Few of the xenobiotics competitively
bound TBG. Two of the hydroxylated PCBs
competed for TBG binding-4-OH-
2',3,4',6'-tetraCB and 3-OH-2',4',6'-triCB
(Fig. 7 and Table 1)-but with affinities
30-100-fold lower than L-T4. Cl- ions in the
2',4', and 6' positions appeared to facilitate
binding to TBG. Addition of an extra Cl- at
the 5 position seemed to abolish TBG bind-
ing, as 4-OH-2',3,4',5,6'-pentaCB did not
compete for binding, whereas 4-OH-
2',3,4',6'-tetraCB did. None of the other
hydroxylated PCBs bound TBG. o,p-DDD
and DDOH bound TBG, but with affinities
70-800-fold lower than L-T4 (Fig. 7 and
Table 1). Acetochlor, alachlor, and metho-
prene showed no affinity for TTR or TBG.

Discussion
Of the four groups of compounds exam-
ined, only the hydroxylated PCBs bound
to human TRj 1 with affinities ranging
from 30-90 pM-affinities 10,000-fold
lower than the natural ligand TY. The
hydroxylated PCBs had 1,000-fold greater
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affinities for TTR than for TR, making
them competitors for the natural ligand L-
T4. Half of the hydroxylated PCBs tested
had higher affinities for TTR than did T4.

Only two of the hydroxylated PCBs bound
TBG-3-OH-2',4',6'-triCB and 4-OH-
2',3,4',6'-tetraCB. In fact, 3-OH-2',4',6'-
triCB did not bind TTR, but had a 20-fold

Table 1. Inhibition constants (± standard error, n = 3 experiments in duplicate) for thyroid hormones and
environmental chemicals interacting with recombinant hTRP, hTTR, and hTBG

K1 (pM)
Compound TRP TTR TBG
T3 0.020 ± 0.015 _
i-T4 0.024 ± 0.012 0.062 ± 0.012 0.076 ± 0.015
DL-T4 0.135 ± 0.054 _
Triac 0.006 ± 0.005
Tetrac 0.075 ± 0.014 -
rT3 0.808 ± 0.151
3-OH-2',4',6'-trichlorobiphenyl 90.3 ± 23.7 >100 5.46
4-OH-3,5-dichlorobiphenyl 83.5 ± 18.7 0.016 >100
4-OH-2',3',4',5'-tetrachlorobiphenyl 37.7 ± 26.0 0.089 ± 0.009 >100
4-OH-2',3,4',6'-tetrachlorobiphenyl 43.0 ± 16.9 0.033 ± 0.002 2.34 ± 0.029
4-OH-2',3,3',4',5'-pentachlorobiphenyl 67.2 ± 17.1 0.141 >100
4-OH-2',3,4',5,6'-pentachlorobiphenyl 36.5 ± 6.65 0.040 ± 0.008 >100
4,4'-diOH-3,3',5,5'-tetrachlorobiphenyl 32.7 ± 12.1 0.011 ± 0.002 >100
PCB 77 >100 100 >00
PCB 126 >100 140 ± 18.7 >100
o,p'-DDT >100 >100 >100
o,pj-DDD >100 >100 4.99 ± 4.13
DDOH >100 89 ± 11 62.20 40.9
p,pj-DDE >100 >100 >100
p,p'-DDT >100 >100 >100
Acetochlor >100 >100 >100
Alachlor >100 >100 >100
Methoprene >100 >100 >100
Abbreviations: TRI, thyroid receptor P; TTR, transthyretin; TBG, thyroid-binding globulin; T3, 3,3',5-triiodothyronine; T4,
thyroxine; Triac, 3,3',5-triiodothyroacetic acid; Tetrac, 3,3',5,5'-tetraiodothyroacetic acid; rT3, 3,3',5'-triiodo-L-thyronine;
PCB 77, 3,3'4,4'-tetrachlorobiphenyl; PCB 126, 3,3',4,4',5-pentachlorobiphenyl; o,p-DDT, 1-(2-chlorophenyl)-1-(4-
chlorophenyl)-2,2,2-trichloroethane; o,p'-DDD, 1-(2-chlorophenyl)-1-(4-chlorophenyl)-2,2-dichloroethane; DDOH, 2,2-
bis(p-chlorophenyl)-ethanol; p,p'-DDE, 2,2-bis(4-chlorophenyl)-1,1-dichloroethane; p,p-DDT, 1,1-bis(4-chlorophenyl)-
2,2,2-trichloroethane.
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Figure 4. Competitive binding of known thyroid receptor (TR) agonists to
recombinant human thyroid receptor ,B. Increasing concentrations of agonist
competed with 2.5-nM [125113,3',5-triiodothyronine (T3). Nonsaturable binding
was estimated by incubation with 10,000-fold molar excess unlabeled T3. n = 3
experiments performed in duplicate, except n = 5 experiments for T3.
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Figure 5. Competitive binding of hydroxylated polychlorinated biphenyls with
recombinant human thyroid receptor f. Assay conditions are as described in
Figure 4. n = 3 experiments performed in duplicate. Abbreviations: T3, 3,3',5-
triiodothyronine; CB, chlorinated biphenyl.
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greater affinity for TBG than for TR. PCBs
and especially their hydroxylated metabo-
lites interact with multiple components of
the thyroid system, enhancing hepatic
metabolism of thyroid hormones (5,13-15),
competing for transport via serum proteins
(21), especially TTR (3,8,22-24), and
competing for receptor binding (this
study). The physiological result is alter-
ation in serum thyroid hormone levels. Of
the known mechanisms, interaction with
the thyroid receptor is likely to be less
important than competition for serum
transport proteins and induction of hepatic
metabolism of T4. Given K. values of
30-90 pM for xenobiotics that interacted
with the receptor, high concentrations on
the order of 20 ppm (micrograms per
gram) would have to be achieved in target
tissues for hydroxylated PCBs to signifi-
cantly alter T3 binding to the receptor.
Alternatively, the Ki values for TTR sug-
gest that a concentration of only 0.017
ppm would have to be achieved for
hydroxylated PCBs to significantly alter
thyroid hormone transport via TTR.
Hydroxylated PCB concentrations on the
order of 0.36 ppm have been measured in
human serum (31). Based on these data, in
vivo disruption of TTR binding is more
likely than disruption of receptor binding.

Neither of the coplanar dioxinlike PCBs,
PCB 77 and PCB 126, bound the TR.
Schantz et al. (2) observed that these PCBs
accelerated spatial learning in rat pups

exposed in utero and during lactation, an
effect observed in hyperthyroid neonatal rats.
Because both coplanar PCBs caused slight
decreases in serum T3 and T4 but accelerated
spatial learning, Schantz et al. (2) suggested
that these PCBs might directly activate the
thyroid receptor. In this study, PCB 77 and
PCB 126 did not bind the human TR[31, so
direct interaction with the receptor probably
does not explain the thyromimetic learning
effect observed in the rats.

Previous work by McKinney et al. (23)
indicated that two other coplanar PCBs,
PCB 169 and PCB 80, bound to a rat
nuclear extract with 100-fold lower affini-
ties than L-T4, whereas PCB 54, an ortho-
substituted congener, did not bind at all.
Although the present study did not exam-
ine the binding affinity of PCBs 169 and
80, reported differences in affinity for
coplanar PCBs may be due to several fac-
tors. First, the current study used a protein
extract of insect cells producing recombi-
nant human TRf1. Therefore, only a sin-
gle TR isoform was available to interact
with compounds in competitive binding
experiments. In contrast, the rat liver
nuclear extract probably contained not
only rat TR,1, but also TRal and TRat2
(30). Second, because only a single TR iso-
form was present in recombinant cell
extracts, only TR homodimers could form,
while in rat liver nuclear extracts, retinoid
X receptors (RXRs), the heterodimeric
partners of TR, were probably also present

(30,32). In vitro, TR-RXR heterodimers
exhibit different affinities for ligands than
do TR-TR homodimers, although both
appear to form spontaneously in cells (30).
Third, species-specific differences in TR
affinity for coplanar PCBs may exist.

DDTs and chloroacetanilide herbicides
cause hypothyroidlike effects in animals,
decreasing serum T4 (16,17,19-21). None
of these compounds bound to the thyroid
receptor, indicating that they are unlikely to
disrupt the thyroid axis via receptor interac-
tion. DDOH bound to TTR and to TBG,
but with such low affinity that concentra-
tions in serum are unlikely to be high
enough to compete for T4 binding. o,p'-
DDD bound to TBG with a fairly low
affinity (5 gM) and is unlikely to reach such
high concentrations in serum because of
environmental exposure. However, clinical
treatment of adrenal carcinomas resulted in
100-600 pM doses of o,p'-DDD (20). One
consequence of o,p'-DDD treatment was
decreased serum T4, purportedly due to
direct competition with o,p'-DDD for TBG
binding (20). Our results support that
hypothesis. Neither of the chloroacetanilides
acetochlor nor alachlor bound TTR or
TBG, but they enhance hepatic metabolism
of T4 in rats (16,17). Alteration of metabo-
lism is probably the major mechanism by
which chloroacetanilides affect thyroid axis
function.

Our results suggest that disruption of
thyroid hormone transport is one of the
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Figure 6. Competitive binding of OH-polychlorinated biphenyls (PCBs) with
purified human transthyretin (TTR). Increasing concentrations of OH-PCBs
competed with 55 nM L-thyroxine (T4) spiked with 100,000 cpm [12511L-T4.
Nonsaturable binding was estimated by incubation with 100-fold molar excess
unlabeled L-T4. n = 3 experiments performed in duplicate. Abbreviations:
DDOH, 2,2-bis(p-chlorophenyl)-ethanol; CB, chlorinated biphenyl.
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Figure 7. Competitive binding of hydroxylated polychlorinated biphenyls with
purified human thyroid-binding globulin. Assay conditions are as described in
Figure 6. n = 3 experiments performed in duplicate. Abbreviations: T4, thyrox-
ine; CB, chlorinated biphenyl; o,p'-DDD, 1-(2-chlorophenyl)-1-(4-
chlorophenyl)-2,2-dichloroethane; DDOH, 2,2-bis(p-chlorophenyl)-ethanol.
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mechanisms by which organochlorine com-
pounds alter thyroid homeostasis. In par-
ticular, hydroxylated PCBs compete effec-
tively for T4 binding to TTR, but few
compounds compete for TBG binding,
even at pM concentrations. TBG is found
only in some mammals, including pri-
mates, ungulates (cattle, sheep, goats, pigs,
water buffalo, and horses), and carnivores
(dog), but not in rodents (rat) or lago-
morphs (rabbit). Depending on species,
TBG binds 60-90% of serum T4.
Interestingly, TBG deficiency in humans
does not interfere with euthyroid status,
suggesting that TTR is also important for
T4 transport in humans (1). TTR is a high-
ly conserved TH binding protein in all ver-
tebrate species (1), so disruption of thyroid
hormone transport by hydroxylated PCBs
could potentially occur in all vertebrates,
not only in humans.
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